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Abstract
In order to investigate a possible correspondence between differential and
difference equations, it is important to possess discretization of ordinary
differential equations. It is well known that when differential equations are
discretized, the solution thus obtained depends on the time step used. In the
majority of cases, such a solution is considered spurious when it does not
resemble the expected solution of the differential equation. This often happens
when the time step taken into consideration is too large. In this work, we show
that, even for quite large time steps, some solutions which do not correspond to
the expected ones are still topologically equivalent to solutions of the original
continuous system if a displacement in the parameter space is considered. To
reduce such a displacement, a judicious choice of the discretization scheme
should be made. To this end, a recent discretization scheme, based on the
Lie expansion of the original differential equations, proposed by Monaco and
Normand-Cyrot will be analysed. Such a scheme will be shown to be sufficient
for providing an adequate discretization for quite large time steps compared to
the pseudo-period of the underlying dynamics.

PACS number: 05.45.Pq

1. Introduction

Usually physical processes are modelled by differential equations where the processes are
assumed to be evolving continuously. But all measurements are available in the form of a time
series discretized in time. It is therefore natural to express a model for this measurement with
difference equations. Indeed, there are two types of global modelling techniques based on
derivative and delay coordinates, respectively. Starting from the phase portrait reconstructed
using derivative coordinates, ordinary differential equations are thus obtained [1]. When delay

0305-4470/04/041203+16$30.00 © 2004 IOP Publishing Ltd Printed in the UK 1203

http://stacks.iop.org/ja/37/1203


1204 E Mendes and C Letellier

coordinates are used, difference equations are obtained under the form of a nonlinear auto-
regressive moving average model [2]. These two types of models may be proposed for the same
underlying dynamics. It is therefore relevant to understand deeply the relationships which
may exist between difference and differential equations for the same underlying dynamics.

The first step for such a purpose is thus to obtain discretization of the continuous system,
the discretization having a solution equivalent to the discrete counterpart. The simplest method
for achieving this is to apply an Euler discretization scheme. However, the resulting solution
is affected by the choice of the discretization time step. For instance, Lorenz showed that
the discretization of a two-dimensional continuous system may generate chaotic behaviour
when the time step is sufficiently large [3]. It is known that this type of behaviour cannot
be exhibited by the continuous counterpart according to the Poincaré–Bendixson theorem.
A one-dimensional difference equation such as the logistic map can also exhibit chaotic
solution for large time steps while its continuous counterpart cannot [4]. Although such
results are correct, an important point is very often overlooked: these spurious solutions of
the discretization scheme which do not correspond to any expected solution of the continuous
systems occur for values of the time step outrageously large when compared to the value of the
characteristic time scale of the original dynamics. When the time step is sufficiently smaller
than the characteristic time scale, we will show that ‘unexpected’ solutions generated by the
discretized model are topologically equivalent to solutions of the continuous counterpart but
with a displacement in the parameter space. Such a displacement in the parameter space is
also observed when a discrete model is identified directly from a single scalar time series
[5]. In this latter case, the reason for such a displacement seems to be the presence of many
sources of uncertainty that can be part of the identification procedure. In this paper, the reason
is in the discretization scheme itself and therefore could be considered as a general property
of discretized dynamical systems.

In order to have a discretization scheme sufficiently robust against increase of the time
step, we will use a discretization scheme introduced by Monaco and Normand-Cyrot [6, 7].
Since relatively large sampling time (time step) can be used for estimating a global discrete
model, it is important to understand how a discretization depends on the time step. The basic
idea behind Monaco and Normand-Cyrot’s method is to use a truncated Lie expansion of the
differential equation which represents the continuous nonlinear system. It has been shown that
such a discretization scheme preserves the fixed points of the continuous system for any order
[8] and that the spurious fixed points depend on the time step when higher-order discretized
models are considered. In this paper, we will show that Monaco and Normand-Cyrot’s scheme
is particularly useful when large time steps are considered.

The subsequent parts of this paper are organized as follows. Section 2 briefly describes
Monaco and Normand-Cyrot’s scheme. In section 3, the dynamical system used as a
benchmark is described as well as the typical behaviour which may be observed. Section 4 is
devoted to the first four orders of Monaco and Normand-Cyrot’s scheme and how increasing
the order of the Lie expansion helps in improving the quality of the discretization model.
Section 5 gives a conclusion.

2. The Monaco and Normand-Cyrot discretization scheme

Consider a dynamical system

ẋ = f (x) (1)
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where x ∈ R
m is the vector made of the dynamical variables and f are analytic functions of

appropriate dimension. The aim is to obtain a discretization of equation (1) for a relatively
large value of the discretization time step h. Such a discretization reads

xk+1 = g(xk, h) (2)

where xk ∈ R
m are the dynamical variables at time t = t0 +kh. h is the discretization time step.

In order to compute such a discretization, we will use the discretization scheme introduced by
Monaco and Normand-Cyrot [6, 7] based on a Lie expansion of equation (1) as follows:

xk+1 = xk +
η∑

n=1

hn

n!
Ln

f (xk) (3)

where η is the order of the expansion. The Lie derivative is given by

Lf (xk) =
m∑

j=1

fj

∂x

∂xj

(4)

where fj designates the j th component of the vector field. The higher order derivatives are
given recursively

Ln
f (xk) = Lf

(Ln−1
f (xk)

)
. (5)

We will show that such a Lie expansion (3) can be truncated at order η to avoid an
excessive number of terms. The dependence of the robustness of the discretization versus time
step increase will be investigated up to η = 4. The series truncated at the first order (η = 1)

corresponds to the Euler scheme. In that case, it was shown that the discretization model of
first order obtained using the Monaco and Normand-Cyrot’s scheme preserves the number
and location of fixed points of its original continuous counterpart [8]. For any higher-order
discretization (η > 1), the location of fixed points of the continuous counterpart is preserved
but the location and number of spurious fixed points introduced by the higher-order terms
depend on the discretization time step h.

3. The dynamical model

We choose to apply the discretization scheme to the system introduced by Genesio and Tesi
in [9] and represented by the following differential equation:

...
x + aẍ + bẋ + x(1 + x) = 0 (6)

which may be rewritten as a set of ordinary differential equations under the form:


ẋ = y

ẏ = z

ż = −az − by − x(1 + x)

(7)

where a and b are the bifurcation parameters. This system has two fixed points; one, F0,
is located at the origin of the phase space and the other, F1, is located at (−1, 0, 0). Fixed
point F0 is a saddle-focus with two complex conjugated eigenvalues with positive real parts
and F1 is also a saddle-focus but with complex eigenvalues with negative real parts. Such a
configuration with two fixed points is very similar to the configuration of the Rössler system
[10]. As for this latter system, the asymptotic behaviour settles down to a limit cycle or a
chaotic attractor as long as the trajectory does not cross the boundary of the attraction basin
associated with the stable manifold of fixed point F1 [11]. Indeed, as soon as the trajectory
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Figure 1. Chaotic behaviour solution of system (7) with a = 0.446 and b = 1.1. (a) Phase
portrait, (b) first-return map.

crosses this manifold, it is ejected to infinity by the unstable manifold corresponding to fixed
point F1. A typical chaotic attractor solution of system (7) is shown in figure 1(a).

A first-return map to a Poincaré section for the system described in equation (7) was
computed as shown in figure 1(b). This is a parabola with a layered structure resulting from
the small damping rate of the dynamics. The damping is not sufficient to fully squeeze
the folding in one cycle around the fixed point F0. Such a feature is very characteristic of
low dissipative systems. Nevertheless, the dynamics remains very similar to the characteristic
dynamics of the class defined by the logistic map. Thus, a period-doubling cascade is observed
in the bifurcation diagram as well as many periodic windows (figure 5). Basically, after the
period-doubling cascade, system (7) may generate a spiral attractor associated with a map
mainly constituted by one increasing and one decreasing branches.

When the system has a three-dimensional phase space, it is possible to describe the flow
by a two-dimensional branched manifold where the two dimensions describe the direction of
the flow and the direction of stretching. The number of branches of the template is equal to
the number of branches in the first-return map. In the present case, the topological analysis
reveals that the layered structure of the first-return map is not relevant and that the map may
be considered as made of two branches. Thus, the critical point located at the maximum of
the first-return map defines a partition of the phase portrait into two regions. A symbol is
associated with each branch. Chaotic trajectories and the periodic orbits constituting their
skeleton are thus encoded over the symbol set {0, 1}. The symbol ‘0’ is associated with
the increasing branch and symbol ‘1’ with the decreasing branch. The increasing branches
are preserving order and decreasing branches are reversing order [12]. The phase portrait is
necessarily divided into one preserving order strip and one reversing order strip. A preserving
order strip represents an even number of half-turns while a reversing order strip represents an
odd number of half-turns. Consequently, the corresponding template will be composed of two
strips. Periodic orbits may thus be encoded by symbolic strings. For instance, a period-2 orbit
having one intersection with the Poincaré section located on the branch ‘0’ and one located on
the branch ‘1’ is designated by the sequence (10). A period-3 orbit would have three symbols,
and so on. The population of periodic orbits embedded within the attractor solution of system
(7) is reported in table 1.

An adequate template must predict topological invariants such as linking numbers between
pairs of periodic orbits. A periodic orbit is here considered as a knot. Periodic orbits embedded
within the attractor can be approximated by segments of the chaotic time series that mimic the
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Table 1. Population of periodic orbits for system (7). Only orbits with a period smaller than 7 are
reported. Parameter values: a = 0.445 and b = 1.1.

Orbit Orbit Orbit

1 100 100010
10 100101 100011
1011 10010 10001
101110 10011 10000
101111 100111 100001
10111 100110 100000
10110 1001
101 1000

behaviour of nearby unstable periodic orbits. A ‘close return’ method [11] is applied to the
Poincaré section to extract them.

The linking numbers are ambient isotopy invariant defined as follows:

Definition 3.1. Let α and β be two knots defining a link L in R
3. Let σ denote the set of

crossings of α with β. Then the linking number reads:

lk(α, β) = 1

2

∑
p∈σ

ε(p) (8)

where ε is the sign of each crossing p with the usual convention, that is

ε=+1 ε=-1
.

The linking number lk(α, β) of two periodic orbits α and β is half of the algebraic sum
of all crossings between α and β (ignoring self-crossings). In practice, the linking numbers
are counted on plane regular projections of orbit pairs by using the third coordinate to define
the sign of the crossings. For instance, orbits (10) and (101) are depicted in figure 2. This
example is very simple and the linking number is found to be equal to −2 since five negative
and one positive crossing are identified.

All the linking numbers between orbits embedded within the attractor are well predicted
by the template (figure 3) where periodic orbits (10) and (101) are drawn. Five negative
and one positive crossings are identified. The linking number ˜lk(10, 101) predicted by the
template is thus −2 as for the plane projection of orbits shown in figure 2. Such a template
can be described by the linking matrix

Mij =
[

0 −1
−1 −1

]
(9)

according to the standard insertion convention [13]. The diagonal elements Mii are equal to
the number of π-twists of the ith strip and off-diagonal elements Mij (i �= j) are given by
the algebraic number of intersections between the ith and j th strips. Further details for such
a topological characterization procedure are extensively discussed in [14, 11, 15].

Before the boundary crisis producing the ejection of the trajectory to infinity, the funnel
chaotic attractor (figure 4(a)) is characterized by a map with additional branches. A first-return
map of up to five branches has been identified in this system (figure 4(b)). Such a scenario
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Figure 2. A link made of two periodic orbits encoded by (10) and (101), respectively. Five
negative and one positive crossings are identified. The linking number lk(10, 101) is therefore
equal to −2.

––

–
–

+

–

Figure 3. Template of the spiral attractor solution of system (7). Periodic orbits (10) and (101)
are represented. From this template, the linking number ˜lk(10, 101) is equal to −2.

was also observed in the Rössler system although its first-return map may present more
numerous branches [11]. Note that the first-return map shown in figure 4(b) presents a
spurious discontinuity located in the first decreasing branch. This feature results from the
fact that the attractor does not present a hole in its middle which could ensure we could
properly compute the Poincaré section. This effect is amplified by the low damping rate of
the dynamics. The discontinuity is indeed an artefact of our computation of the Poincaré



Displacement in the parameter space versus spurious solution of discretization with large time step 1209

-1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5
x

-1

-0.75

-0.5

-0.25

0

0.25

0.5

y

(a)

-1.25-1-0.75-0.5-0.250
x

n

-1.25

-1

-0.75

-0.5

-0.25

0

x
n+1

(b)

Figure 4. Funnel chaotic attractor solution of system (7) with a = 0.4154 and b = 1.1. (a) Phase
portrait, (b) first-return map.
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Figure 5. Bifurcation diagrams of system (7). The period doubling as a route to chaotic attractor
ensures us that the spiral attractor corresponds to the class of chaotic behaviour associated with the
logistic map. (a) Versus a with b = 1.1, (b) versus b with a = 0.446.

section and these two decreasing branches must be counted for a single branch. The template
characterizing this funnel attractor is described by the linking matrix

Mij =




0 −1 −1 −1 −1
−1 −1 −2 −2 −2
−1 −2 −2 −3 −3
−1 −2 −3 −3 −4
−1 −2 −3 −4 −4


 . (10)

Note that this matrix contains matrix (9).
In order to have a global view of the solutions of system (7), bifurcation diagrams are

computed versus control parameters (figure 5). In both cases, an inverse period-doubling
cascade is observed. The similarities between these two bifurcation diagrams reveal that the
parameter space is organized like an onion, that is, the same solution may be observed for
many control parameter values located on a surface organized like concentric spheres.

The characteristic frequencies of the spiral and funnel attractors are exhibited by
computing two Fourier spectra (figure 6(a)). The main frequency is observed at f0 ≈ 0.17 Hz
and therefore corresponds to a pseudo-period equal to 5.9 s. A second frequency clearly
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Figure 6. Fourier spectra (a) for chaotic solutions of system (7) with b = 1.1. One main frequency
at f0 ≈ 0.17 Hz is identified. The frequency f0/4 results from the periodic window associated
with a period-4 limit cycle which may be identified under slight change in the bifurcation parameter
(b). (a) Fourier spectra, (b) bifurcation diagram.

appears for the funnel attractor (a = 0.4154). This is the signature of a periodic window
associated with a stable period-4 limit cycle which is identified under a slight change in the
bifurcation parameters, a = 0.418 for instance (figure 6(b)). Note, however, that the boundary
crisis that occurs during the second period-4 window can be observed around 0.415.

4. Different order approximation schemes

In this section four different discretized models obtained by applying Monaco and
Normand-Cyrot’s scheme to the system described in section 3 are analysed as the time step is
increased.

4.1. First-order discretized model

Applying Monaco and Normand-Cyrot’s scheme to system (7) leads to


xk+1 = xk + hyk

yk+1 = yk + hzk

zk+1 = zk − h(azk + byk + xk(1 + xk)).

(11)

For sufficiently small time step h, the solution of this discretization is topologically equivalent
to the attractor solution of continuous system (7). This means that the attractor is characterized
by the same template as the spiral attractor of the continuous counterpart. Only the population
of periodic orbits is slightly changed. Nevertheless, as usually observed for any type of
discretization scheme, the nature of the solution depends on the value of the discretization
time step h. In order to have a global overview of these solutions, a bifurcation diagram
is computed versus h (figure 7(a)). The discretization time step may be varied over the
range ]0; 0.0358]. For larger values, the trajectory is ejected to infinity. Over this range,
discretized model (11) exhibits either a chaotic attractor or a limit cycle. It has been verified
that the chaotic attractors can be described by the template defined by the linking matrix of
equation (10). The largest value of the discretization time step corresponds to T0

165 , which is
a particular small value. Note that the period-4 window is here clearly observed with h ≈
0.035 s in the bifurcation diagram (figure 7(a)). The boundary crisis therefore occurs in
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Figure 7. Bifurcation diagram versus the discretization time h. (a) a = 0.469 and b = 1.1,
(b) a = 0.570 and b = 1.1.

conditions very similar to those of system (7). The discretization time step therefore plays
the role of one bifurcation parameter. In this case, increasing h is similar to decreasing the
parameter a. In other words, h plays more or less the same role as the bifurcation parameter a.
Consequently, all solutions of the discretization of system (7) are topologically equivalent to
solutions of its continuous counterpart. The discretization scheme, even for the first order, is
already very efficient as long as only the nature of the solution is considered and for sufficiently
small value of the discretization time step.

When the highest value of the discretization time step is considered (h = 0.358 s), the
funnel attractor is observed with a = 0.469. The spiral attractor can be recovered when the a
bifurcation parameter is changed to 0.504. This is just a consequence of the interplay between
the time step h and the bifurcation parameter a. Indeed, the effect of the discretization time
step h can be balanced by an action on the a parameter value. Such a feature was also observed
in a discretization of the Rössler system using nonstandard Mickens’ schemes [16]. Applying
such a change in the bifurcation parameters allows us to recover the period-doubling cascade
which is not observed in the bifurcation diagram computed with a = 0.469 and b = 1.1
(figure 7(a)). Choosing a = 0.570 with b unchanged, the bifurcation diagram versus the
discretization time step presents the period-doubling cascade (figure 7(b)) as observed in the
original system (figure 5). Note that in this case, the time step can be increased up to 0.1046,
that is, over a range roughly three times larger than for the original values of the bifurcation
parameters.

The topology of the attractor solution of the first-order discretization is investigated for
different values of h. When a = 0.469 and b = 1.1, the spiral attractor is obtained until
h is smaller than 0.012 s. For this value, the first-return map is made of two monotonic
branches (figure 8(a)). With larger values of h, a third branch occurs and the funnel attractor
is observed. With h = 0.012 s, the population of periodic orbits embedded within the
attractor is the same as the population extracted from system (7) with a = 0.446 and
b = 1.1 (compare the first-return maps shown in figures 8(a) and 1(b)). The linking number
lk(10, 101) is equal to −2 as observed for the spiral attractor solution of system (7) (compare
figures 8(b) and 2). This topological equivalence between the first-order discretized model
and system (7) may be obtained for any other value of h if the a value for system (7) is properly
tuned (a change of the time step in the discrete model can be balanced by a change of the a
parameter value).
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Figure 8. First-return map to a Poincaré section of the attractor solution of the first-order discrete
model with a = 0.469, b = 1.1 and h = 0.012 s. The link made of periodic orbits (10) and (101)
shows that the linking number lk(10, 101) is left unchanged, that is equal to −2. (a) First-return
map, (b) orbits (10) and (101).

4.2. Second-order discretized model

The second-order discretization of system (7) is now considered. It reads


xk+1 = xk + hyk + h2

2 zk

yk+1 = yk + hzk − h2

2 (azk + byk + xk(1 + xk))

zk+1 = zk − h(azk + byk + xk(1 + xk))

− h2

2 [(1 + 2xk)yk + bzk − a(azk + byk + xk(1 + xk))].

(12)

The first obvious advantage presented by this second-order discretization is that the
discretization time step may be varied over the larger range ]0; 0.4733]. The largest time
step now corresponds to T0

12 . More than a factor ten is gained with this second order. Such
a feature shows the efficiency of Monaco and Normand-Cyrot’s scheme. Indeed, most of
discretization schemes found in the literature cannot provide discretized models which remain
valid over a very large range of time step h. It should also be noted that when the discretization
time step is less than 0.1, the bifurcation diagram does not show too many changes in the
chaotic behaviour. This means that over this interval, the dynamics is rather not sensitive
to increase in the time step h. When discretized model (12) is iterated with the largest time
step h = 0.473 s, 12 points are obtained per cycle. This can be considered as a threshold
below which an accurate description of the structure of the attractor is no longer achieved. For
instance, to perform topological analysis as developed in [11], an interpolation must be used
for extracting the periodic orbits with sufficient accuracy.

When the a bifurcation parameter is changed to 0.560, the bifurcation diagram then
presents the period-doubling cascade observed in the original system given by equation (7).
The largest discretization time step is equal to 0.723 s, that is T0

8 . Such a value for the time
step does not allow us to have accurate structure of the dynamics as seen in the bifurcation
diagram (figure 9(b)). Note that the period-4 window observed for h ≈ 0.62 s can no longer
be detailed nor can the period-doubling cascade occurring in the beginning of this window
be identified. It could be considered that the time step h for which a discretized model of the
continuous system is no longer adequate has already been achieved. The aforementioned value
of h is quite close to the time associated with the Nyquist criterion which states that, when the
sampling rate is lower than twice the highest significative frequency in the power spectrum,
insufficient information is available for a safe description of the dynamics. In the present case,
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Figure 9. Bifurcation diagrams of the second-order discretization versus the time step h.
(a) a = 0.469, (b) a = 0.560.
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Figure 10. First-return map to a Poincaré section of the attractor solution of the second-order
discrete model with a = 0.469, b = 1.1 and h = 0.31 s. The link made of periodic orbits (10) and
(101) shows that the linking number lk(10, 101) is left unchanged, that is equal to −2, although
spurious crossings due to the low sampling effect are present. (a) First-return map, (b) orbits (10)
and (101).

the highest frequency is around 0.5 Hz (figure 6(a)). Consequently, a sampling time less than
1 s must be used if a safe description of the dynamics is required. Since the Nyquist criterion
is an idealized threshold, a time step around 0.7 s could be considered adequate. Despite all
the discussion, the range over which the dynamics remains topologically equivalent can still
be improved as explained in the next section.

As for the first-order model, the topology of the attractor solution of the second-order
model is investigated for many different values of h. With a = 0.469 and b = 1.1, the spiral
attractor is recovered until h is smaller than 0.31 s. Beyond this value of h, the attractor is
obtained. With h = 0.31 s, the two branch first-return map (figure 10(a)) is very similar to
the map obtained with system (7) for a = 0.445 (b = 1.1). The population of periodic orbits
is also the same as the population reported in table 1. Linking numbers are unchanged as
exemplified by the link made of orbits (10) and (101) shown in figure 10(b). The attractor is
therefore characterized by the template shown in figure 3. Spurious crossings which were not
identified in the previous cases are observed here. They result from the quite large time step
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Figure 11. Bifurcation diagrams of the third-order (a) and fourth-order (b) discretizations versus
the time step h. The control parameters are (a, b) = (0.469, 1.1). (a) Third-order discretization,
(b) fourth-order discretization.

h used. But note that the linking number lk(10, 101) is still equal to −2 and, consequently,
the topological properties are not affected. These spurious crossings could be deleted by
interpolating the data to avoid the low sampling effects.

4.3. Third-order discretized model

We will end this investigation with the third-order discretization of system (7) which reads


xk+1 = xk + hyk + h2

2 zk − h3

6

(
azk + byk + xk + x2

k

)
yk+1 = yk + hzk − h2

2

(
azk + byk + xk + x2

k

)
+ h3

6

[−(1 + 2xk)yk − bzk + a
(
azk + byk + xk + x2

k

)]
zk+1 = zk − h

(
azk + byk + xk + x2

k

)
+ h2

2

[−(1 + 2xk)yk − bzk + a
(
azk + byk + xk + x2

k

)]
+ h3

6

[
(−2yk + a(1 + 2xk))yk − (ab − 1 − 2xk)zk + (a2 − b)

(
azk + byk + xk + x2

k

)]
.

(13)

The number of terms becomes quite large but we will show that this discretization provides
solutions which are close to the solution of the continuous counterpart for a quite significant
interval of the time step. First, the bifurcation diagram (figure 11(a)) does not look like all
diagrams computed for the previous lower order discretizations. In particular, an inverse
period-doubling cascade is observed when one of the bifurcation parameters is varied in
the original continuous system (figure 5). Consequently, the time step no longer plays the
same role as in the previous discretizations. In fact, it now plays a role very similar to the
bifurcation parameter a and the dynamics is almost unchanged for values of h up to 0.25 s.
For such a value of the discretization time step, around 20 points per cycle are available.
This number of points is considered reasonable to accurately describe the topology of the
attractor.

Since increasing the value of h no longer corresponds to a development of the dynamics
(we observe an inverse period-doubling cascade in the bifurcation diagram shown in
figure 11 rather than a direct cascade) and since we would like to check the topology of
the phase portrait of third-order discrete model (13) before the transition between spiral and
the funnel attractors, the change in h is balanced by a change in a and a must be decreased
to recover this transition. The first-return map is thus computed with a = 0.446 and h =
0.31 s. Again, a two branch map similar to the map for system (7) with the same value of a
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Figure 12. First-return map to a Poincaré section of the attractor solution of the second-order
discrete model with a = 0.445, b = 1.1 and h = 0.31 s. The link made of periodic orbits (10) and
(101) shows that the linking number lk(10, 101) is equal to −2, although spurious crossings due
to the large time step are present. (a) First-return map, (b) orbits (10) and (101).
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Figure 13. Limit cycle generated by the third-order discretization of system (7) for quite large
time step. A large number of points are required to obtain a global representation of the dynamics.
The continuity can no longer be observed step by step but only with a global point of view. Data
points are not connected by segments. (a) h = 1.0 s, (b) h = 1.25 s.

(figure 1(a)) is obtained (figure 12(a)). The link made of orbits (10) and (101) is shown in
figure 12(b). Spurious crossings are detected due to the large time step but the linking number
remains unchanged as for the second-order discrete model (see figure 10(b)). The population
of periodic orbits is the same as for system (7) with the same parameter values. This means
that even with a quite large value of h, the topology is not affected.

For larger values of the time step (h ≈ 1.0 s), an inverse period-doubling cascade occurs
and ends with a period-2 limit cycle. For such a time step, only six points are available per
cycle which is far from enough to have a good representation of the dynamics. Indeed, the
continuity of the solution can no longer be obtained step by step but only when quite a large
number of iterations are taken into account. In addition to that, the time step is larger than
the time associated with the Nyquist criterion. Despite that, the period-2 limit cycle can be
reproduced when the points are not joined by straight segments (figure 13(a)). The blurred
aspect of the bifurcation diagram therefore results from the inaccuracy of the Poincaré section
and not from the inadequacy of the solution of the third-order discretization. For larger values
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Figure 14. Spurious limit cycle (a) and chaotic attractor (b) observed in the fourth-order
discretization of system (7) with two different values of h. Remember that these representations are
closer to a first-return map to a Poincaré section than to a continuous representation. (a) h = 1.400 s,
(b) h = 1.458 s.

of the discretization time step, the dynamics is no longer well reproduced as expected. For
instance, with h = 1.25 s, roughly five points per cycle, the limit cycle observed (figure 13(b))
does not have the same configuration as the solution of continuous system (7) would have.
Despite its rough appearance, the limit cycle is still topologically equivalent to a circle, that
is, to the limit cycle observed with h = 1.0 s. It is worth emphasising that the value of
the time step is sufficiently large to imply that the discretization becomes quite close to a
first-return map to a Poincaré section. Since it is not possible to switch continuously from an
attractor to a first-return map, there is necessarily a range of the discretization time step over
which the solution cannot correspond to a solution of the continuous system. Therefore, some
additional oscillations appear on the limit cycle for sufficiently large h. It is important to note
that this happens only for time steps larger than the time associated with the Nyquist criterion
and consequently the dynamics observed does not correspond to any solution of the original
continuous system. This means that with this discretization scheme, the upper limit for the
discretization time step is reached.

Using higher order helps a little bit to improve the range over which the time step
h is varied without any major bifurcation (figure 11(b)). In the case of the fourth-order
discretization, not reported here, the time step may be increased up to h = 0.5 s without any
major modification of the topology of the original attractor. With larger values, periodic orbits
are destroyed as seen for the case of the period-5 orbits. These orbits were destroyed just after
the window (h ≈ 0.66 s) where an inverse period-doubling cascade starts leading to the end
of the bifurcation diagram. Note that just before the boundary crisis, the behaviour solution
of the fourth-order discretization with h = 1.458 s is a chaotic attractor (figure 14) and no
longer a limit cycle. The route to chaos followed from the period-1 limit cycle to the chaotic
attractor is similar to the route described by Lorenz [3], that is, the period-1 limit cycle starts
to present a distorted structure as observed in the third-order discretization (figure 13). The
boundary crisis occurs sufficiently late to allow the attractor to become chaotic. Obviously,
the attractor does not have any topological equivalent in the continuous counterpart. This
means that getting a discretization with time step around 1.5 s is no longer an attainable goal
since the amount of information required per cycle to describe the structure of the attractor
reasonably well is not sufficient. This was expected as the Nyquist criterion was violated and
therefore such a discretization should not be attempted.



Displacement in the parameter space versus spurious solution of discretization with large time step 1217

5. Conclusion

We showed that Monaco and Normand-Cyrot’s scheme based on a truncated Lie expansion of
the differential equation that describes the continuous system under investigation can be used
very efficiently to obtain quite accurate discretization of a continuous nonlinear system. This
has been checked using a simple system generating chaotic behaviour. It was shown that even
with a low-order scheme, the solutions of the discretization are topologically equivalent to
some solutions of the continuous counterpart. To recover the original dynamics, the bifurcation
parameters must be changed. In other words, applying a discretization scheme necessarily
induces a displacement in the parameter space when the discretization time step is greater
than a threshold which depends on the order of the discretization used. Using higher-order
discretization schemes allows one to obtain difference equations that are able to reproduce
the solutions of the original continuous system without any displacement in the parameter
space, and for a significant range of time steps. It has been shown that it becomes almost
impossible to obtain accurate discretization for time steps greater than the time associated
with the Nyquist criterion. This seems reasonable since for larger values the dynamics can no
longer be accurately described. Similar results have been observed with discretization of the
Rössler system using Mickens’ nonstandard scheme and we believe that the features reported
here are quite general.

It may be concluded from this investigation that the discretization tends to converge
towards a quite stable topology when the third-order or higher-order discretization is used.
Using a higher order scheme would improve a little bit the range over which the time step
may be varied without any major change in the dynamics, but the significant increase in the
number of terms involved may not always justify such a choice. For the majority of cases, it
seems that the second-order would be a practical choice due to its rather limited number of
terms and its significant range of value for the time step for which the dynamics is reproduced
without a too large important displacement in the parameter space.
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